Relationship between chromosome fragility, aneuploidy and severity of the haematological disease in Fanconi anaemia.
نویسندگان
چکیده
Fanconi anemia (FA) is a chromosome instability syndrome, characterized by progressive pancytopenia and cancer susceptibility. Other cellular features of FA cells are hypersensitivity to DNA cross-linking agents and accelerated telomere shortening. We have quantified overall genome chromosome fragility and euploidy as well as chromosomes 7 and 8 aneuploidy in peripheral blood lymphocytes from a group of FA patients and age-matched controls that were previously measured for telomere length. The haematology of FA samples were also characterized in terms of whole blood cell, neuthrophil and platelet counts, transfusion dependency, requirement of androgens, cortico-steroids or bone marrow transplantation, and the development of bone marrow clonal cytogenetic abnormalities, myelodysplastic syndrome or acute myeloid leukemia. As expected, a high frequency of spontaneous chromosome breaks was observed in FA patients, especially of chromatid-type. No differences in chromosomes 7 and 8 monosomy, polysomy and non-disjunction were detected between FA patients and controls. The same was true for overall genome haploidy or polyploidy. Interestingly, the spontaneous levels of chromosome fragility but not of numerical abnormalities were correlated to the severity of the haematological disease in FA. None of the variables included in the present investigation (chromosome fragility, chromosome numerical abnormalities and haematological status) were correlated to telomere length.
منابع مشابه
A new autosomal recessive anomaly mimicking Fanconi's anaemia phenotype.
A family in which three siblings born to related parents all manifested clinical abnormalities characteristic of Fanconi's anaemia (microcephaly, short stature, slow growth, beak nose, micrognathia, skin dyspigmentation and forearm and thumb dysplasia in 2/3) is reported. All five family members had normal spontaneous chromosome breakage, a normal response to diepoxybutane and mitomycin C, and ...
متن کاملClinical and cytogenetic diversity in Fanconi's anaemia.
Abnormally high levels of spontaneous and mitomycin C or diepoxybutane induced chromosome breakage were observed in lymphocytes from eight out of nine previously undescribed patients clinically diagnosed as having Fanconi's anaemia. The results suggest that the combination of spontaneous and induced chromosome breakage is a good aid in the differential diagnosis and we suggest that increased ch...
متن کاملDNA Damage in Leukocytes from Fanconi Anemia (FA) Patients and Heterozygotes Induced by Mitomycin C and Ionizing Radiation as Assessed by the Comet and Comet-FISH Assay
Background: Lymphocytes of Fanconi anemia (FA) show an increased sensitivity to the alkylating agents such as mitomycin C (MMC), but their responses to gamma-irradiation is controversial. The extent of DNA damage in leukocytes of FA patients following irradiation and MMC treatment was studied at cellular and single chromosome level. Methods: DNA damage induced by gamma-rays and MMC was measure...
متن کاملThe clastogenic response of the 1q12 heterochromatic region to DNA cross-linking agents is independent of the Fanconi anaemia pathway.
Fanconi anaemia (FA) is a rare genetic syndrome of cancer susceptibility characterized by spontaneous and induced chromosome fragility, especially after treatment with cross-linking agents. Recent investigations showed interactions between FA proteins and chromatin remodelling factors. To investigate a potential uneven distribution of the FA pathway through the human genome depending on chromat...
متن کاملI-35: Polar Body Analysis by Array CGH Identifies Women with Varying Susceptibility to Aneuploidy and Suggests that Non-disjunction Is Not The Predominant Mechanism Leading to Aneuploidy in Humans
Background: The maternal age effect for trisomy is well known. However what is less established is whether certain women are more (or less) prone to segregation errors, independent of age. Trisomy arises primarily through maternal meiosis I chromosome segregation errors however the precise mechanism by which these errors occur is unclear. Current dogma attributes the origin of trisomy to malseg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutation research
دوره 504 1-2 شماره
صفحات -
تاریخ انتشار 2002